Machine Learning для начинающих

Machine Learning для начинающих
ru
22.08.2023
80 г 44 мін 23 сек

ML-инженер — это специалист, который находится на стыке анализа данных и разработки. Он должен уметь писать код, строить математические модели и понимать потребности бизнеса.

Мы составили программу курса таким образом, чтобы любой желающий без сильной математической подготовки смог разобраться со всеми этапами работы: от сбора данных и применения классических алгоритмов до обучения нейросетей и проведения A/B-тестов.

Искать работу в новой профессии непросто, поэтому мы решили поделиться своим опытом и уделили отдельное внимание подготовке к собеседованиям и разбору популярных задач.

Одним словом, у вас в руках перед вами — исчерпывающий starter pack для начала карьеры в ML и Data Science.

 

ПРОГРАММА КУРСА

1. ПРИКЛАДНАЯ РАЗРАБОТКА НА PYTHON

Начнём с основ программирования, научимся писать код на Python и освоим библиотеки для анализа данных и машинного обучения. Научимся работать с базами данных и разберёмся, как с помощью SQL-запросов получать данные для моделей. Поговорим об архитектуре приложений и узнаем, как контролировать версии с помощью Git. Напишем прототип будущего ML-сервиса и настроим всё необходимое для его работы.

2. МАШИННОЕ ОБУЧЕНИЕ

Познакомимся с классическими алгоритмами машинного обучения. Рассмотрим всё от простых линейных моделей до градиентного бустинга на решающих деревьях. Научимся готовить данные для моделей, настраивать разные параметры и оценивать качество работы ML-алгоритмов. Обсудим тонкости разработки рекомендательных систем, обучим модель на данных социальной сети и свяжем её с нашим приложением.

3. ОСНОВЫ DEEP LEARNING

Глубинное обучение и нейронные сети позволяют решать задачи, в которых классические модели бессильны: распознавание лиц, детекция объектов на изображениях, генерация осмысленного текста. Разберём популярные архитектуры нейросетей, научимся применять предобученные модели и тренировать свои. Построим продвинутую модель и усовершенствуем наш алгоритм рекомендаций.

4. СТАТИСТИКА И A/B-ТЕСТЫ

Рассмотрим основные понятия теории вероятностей и математической статистики. Научимся проводить A/B-тесты и достоверно оценивать влияние ML-моделей на продукт и бизнес. Обсудим подводные камни проведения экспериментов и способы оценки метрик в ситуациях, когда A/B-тест провести невозможно. Реализуем свою систему тестирования и узнаем, удалось ли нам повысить качество рекомендаций в сравнении с базовым решением.

5. ПОДГОТОВКА К СОБЕСЕДОВАНИЯМ

Поделимся своим опытом и расскажем, как проходят собеседования на Junior ML-инженера: разберём алгоритмические задачи на Python, а также популярные вопросы по машинному обучению, статистике и А/В-тестам. Практические задания помогут набраться уверенности в своих знаниях, заранее набить руку и уверенно пройти этот непростой этап.

Вы не можете просматривать данный курс -

Array ( [filesize] => 211616050 [mime_type] => video/mp4 [length] => 3849 [length_formatted] => 1:04:09 [width] => 1280 [height] => 694 [fileformat] => mp4 [dataformat] => quicktime [audio] => Array ( [dataformat] => mp4 [codec] => ISO/IEC 14496-3 AAC [sample_rate] => 44100 [channels] => 2 [bits_per_sample] => 16 [lossless] => [channelmode] => stereo ) [created_timestamp] => 1663155533 )